

A Key Feature Screening Method for Human Activity Recognition Based on Multi-head Attention Mechanism

Hao Wang, Fangyu Liu, Xiang Li, Ye Li, Fangmin Sun* (fm.sun@siat.ac.cn)

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China

Problem & Motivation

- HAR features are high-dimensional and redundant; edge deployment constrained.
- Feature-level interpretability is often missing in existing pipelines.
- Need to know which features matter while keeping accuracy.

We aim to deliver a compact, high-accuracy, and feature-level interpretable pipeline.

Dataset & Features

KU-HAR dataset^[1]:

- 90 subjects, 18 activities;
- Waist 6-axes IMU (accelerometer + gyroscope);
- 20,750 samples (non-overlapping 3-second windows).

Feature:

We use TSFEL^[2] to extract a total of 156 features from each of the 6 IMU channels, results in a total of **936 features** per sample $(156 \times 6 = 936)$.

Machine learni

> Overall Workflow

Input & Feature

- Use KU-HAR dataset and extract TSFEL features
- 156 features per axis; 936 features per sliding window.

Channel-wise Projection

 Apply weight-independent linear layers to extract features from each feature and generate feature embeddings.

Attention Weighting & Screening

 Use multi-head self-attention to score features; average scores across heads and folds, then select per-axis Top-10.

Classification

 Train machine learning classifier on the screened features to achieve high accuracy with low compute at inference.

Feature wise independent weights with TSFEL library Human activity with waist IMU Feature screening Guide to feature screening Feature wise attention weights

•••

Experimental Result

> Top-10 important features.

Feature name	Domain	Description	Formula
MFCC_9	Spectral	Mel-scale frequency cepstral coefficients	As in paper [3]
Spectral distance	Spectral	The signal spectral distance	$\sum_{i=0}^{N} lr_{fmag_i} - cumsum_{fmag_i}$
Positive turning points	Temporal	Number of positive turning points of the signal	$\sum_{i=0}^{N-2} 1(\frac{ds_i}{dt} > 0 \land \frac{ds_{i+1}}{dt} < 0)$
Maximum frequency	Spectral	Maximum frequency of the signal	$freq[min\{i cumsum_{fmag_i} \ge 0.95 \cdot cumsum_{fmag_{max}}\}]$
ECDF Percentile Count_1	Statistical	The cumulative sum of samples that are less than the percentile	$\sum_{i=0}^{N} 1(ECDF\ values(s_i) < p)$
Signal distance	Temporal	Signal traveled distance	$\sum_{i=0}^{N-1} \sqrt{1 + \Delta s_i^2}$
Spectral positive turning points	Spectral	The number of positive turning points of the fft magnitude signal	$\sum_{i=0}^{N-2} 1 \left(\frac{df mag_i}{df req_i} > 0 \land \frac{df mag_{i+1}}{df req_{i+1}} < 0 \right)$
Negative turning points	Temporal	Number of negative turning points of the signal	$\sum_{i=0}^{N-2} 1 \left(\frac{ds_i}{dt} < 0 \land \frac{ds_{i+1}}{dt} > 0 \right)$
Power bandwidth	Spectral	Power spectrum density bandwidth of the signal	$ max\{freq C(freq) \le 0.95 \cdot C(freq_{max})\} - min\{freq C(freq) \ge 0.95 \cdot C(freq_{max})\} $
Zero crossing rate	Temporal	Zero-crossing rate of the signal	$\sum_{i=0}^{N-1} 1(sign(s_i) \neq sign(s_{i+1})$

> Comparison against representative baselines.

	Method	Data	Human activity recognition KU-HAR Dataset: 20,750 samples from 90 subjects (75 Male / 15 Female)							
Year										
			ACC	PRE	REC	F1	MCC	AUC	FLOPs	Params
2021	DenseNet-GRU	Waist IMU	0.89±0.01	0.89±0.01	0.89±0.01	0.89±0.01	0.88±0.01	0.97±0.00	54.53M	1.31M
2022	CNN	Waist IMU	0.83 ± 0.02	0.84 ± 0.01	0.83 ± 0.02	0.82 ± 0.02	0.82 ± 0.02	0.98±0.00	3.28M	1.19M
2022	ResRNN	Waist IMU	0.76±0.01	0.76±0.06	0.76 ± 0.01	0.71±0.02	0.76±0.01	0.90 ± 0.02	17.19M	1.29M
2023	ResNet-BiGRU-SE	Waist IMU	0.89 ± 0.01	0.90±0.01	0.89 ± 0.01	0.89 ± 0.01	0.89 ± 0.01	0.99 ± 0.00	0.08G	4.06M
2024	CNN-LSTM	Waist IMU	0.80 ± 0.01	0.82 ± 0.02	0.80 ± 0.01	0.80 ± 0.01	0.79±0.01	0.97±0.00	7.05M	1.85M
2024	Multi-STMT	Waist IMU	0.85±0.01	0.87 ± 0.02	0.85 ± 0.01	0.85±0.01	0.84 ± 0.01	0.98 ± 0.01	47.70M	5.35M
Ours	Linear+Attention	All Features	0.93±0.01	0.93±0.01	0.93 ± 0.01	0.93 ± 0.01	0.93±0.01	0.90 ± 0.02	1.17M	0.79M
Ours	LR	Select Features	0.81±0.00	0.81 ± 0.00	0.81 ± 0.00	0.81 ± 0.00	0.80 ± 0.00	0.99 ± 0.00	1.05K	1.07K
Ours	DT	Select Features	0.83 ± 0.00	0.83 ± 0.00	0.83 ± 0.00	0.83±0.00	0.82 ± 0.00	0.90 ± 0.00	3.00K	5.99K
Ours	KNN	Select Features	0.78±0.00	0.78 ± 0.00	0.78 ± 0.00	0.77±0.01	0.76±0.01	0.96±0.00	0.59K	0.95M
Ours	RF	Select Features	0.93±0.00	0.93±0.00	0.93±0.00	0.93±0.00	0.92 ± 0.00	1.00±0.00	0.33M	0.66M
Ours	SVM	Select Features	0.85 ± 0.01	0.85±0.01	0.85±0.01	0.85±0.01	0.84±0.01	0.99 ± 0.00	0.56M	0.56M
Ours	GB	Select Features	0.93±0.00	0.93±0.00	0.93±0.00	0.93±0.00	0.92±0.00	1.00±0.00	1.45K	2.90K
Ours	LightGBM	Select Features	0.96±0.00	0.96±0.00	0.96±0.00	0.96±0.00	0.95±0.00	1.00±0.00	0.26M	0.51M

Tablenotes: FLOPs is the computational cost per sample inference

> Confusion matrix and class-wise performace.

•				
	Class	PRE	REC	F1
	Stand	0.952	0.954	0.953
	Sit	0.955	0.950	0.952
- 400	Talk-sit	0.937	0.952	0.944
	Talk-stand	0.955	0.982	0.969
- 350	Stand-sit	0.973	0.981	0.977
- 300	Lay	0.970	0.962	0.966
	Lay-stand	0.986	0.973	0.979
- 250	Pick	0.947	0.971	0.959
	Jump	0.991	0.980	0.986
- 200	Push-up	0.977	0.958	0.967
	Sit-up	0.973	0.940	0.956
- 150	Walk	0.924	0.926	0.925
- 100	Walk-backward	0.947	0.842	0.891
100	Walk-circle	0.862	0.792	0.824
- 50	Run	0.973	0.982	0.977
	Stair-up	0.921	0.929	0.924
- 0	Stair-down	0.940	0.945	0.943
	Table-tennis	0.980	0.972	0.976
	Avg='Weighted'	0.958	0.957	0.957

Feature screening validation

Conclusion

- We propose an attention-guided feature screening framework for wearable HAR.
- Our method combines independent channel-wise linear transformations with attention-guided feature selection, producing a compact and highly informative feature set that enhances both classification performance and interpretability.
- Coupled with a lightweight LightGBM classifier, the screened features reach 96.0% accuracy on KU-HAR while drastically reducing compute and memory compared with deep baselines.

Reference

- [1] Ku-har: An open dataset for heterogeneous human activity recognition, Pattern Recognition Letters, vol. 146, pp. 46–54, 2021.
- [2] Tsfel: Time series feature extraction library, SoftwareX, vol. 11, p. 100456, 2020.
- [3] Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences, IEEE transactions on acoustics, speech, and signal processing, vol. 28, no. 4, pp. 357–366, 1980.