

MixMatch-based Semi-supervised Learning Approach for Cross-domain Locomotion and Transportation Mode Recognition

Team: SITA-BIT

Hao Wang, Fangyu Liu, Xiang Li, Huazhen Huang, Ye Li, Fangmin Sun* (fm.sun@siat.ac.cn)

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

Problem & Motivation

Core Challenge:

- Cross-domain Human Activity Recognition is a significant challenge, especially when **no labeled data is available in the target domain**.

Research Motivation

- We aims to develop a semi-supervised learning framework to effectively leverage unlabeled data and overcome the domain shift problem.

Dataset

Source Domain (Labeled):

- PAMAP2^[1], UCI HAR^[2], mHealth^[3], RealWorld^[4], and KU-HAR^[5];

Target Domain (Unlabeled):

- The Kyutech IMU^[6] dataset provided by the challenge.

Feature:

- We use TSFEL library to extract a total of 1872 features from 12 channels (tri-axial + magnitude)

Proposed Method

Core Mechanics of MixMatch

Data Augmentation

- Apply K times augmentations to each unlabeled sample.

Pseudo-Labeling

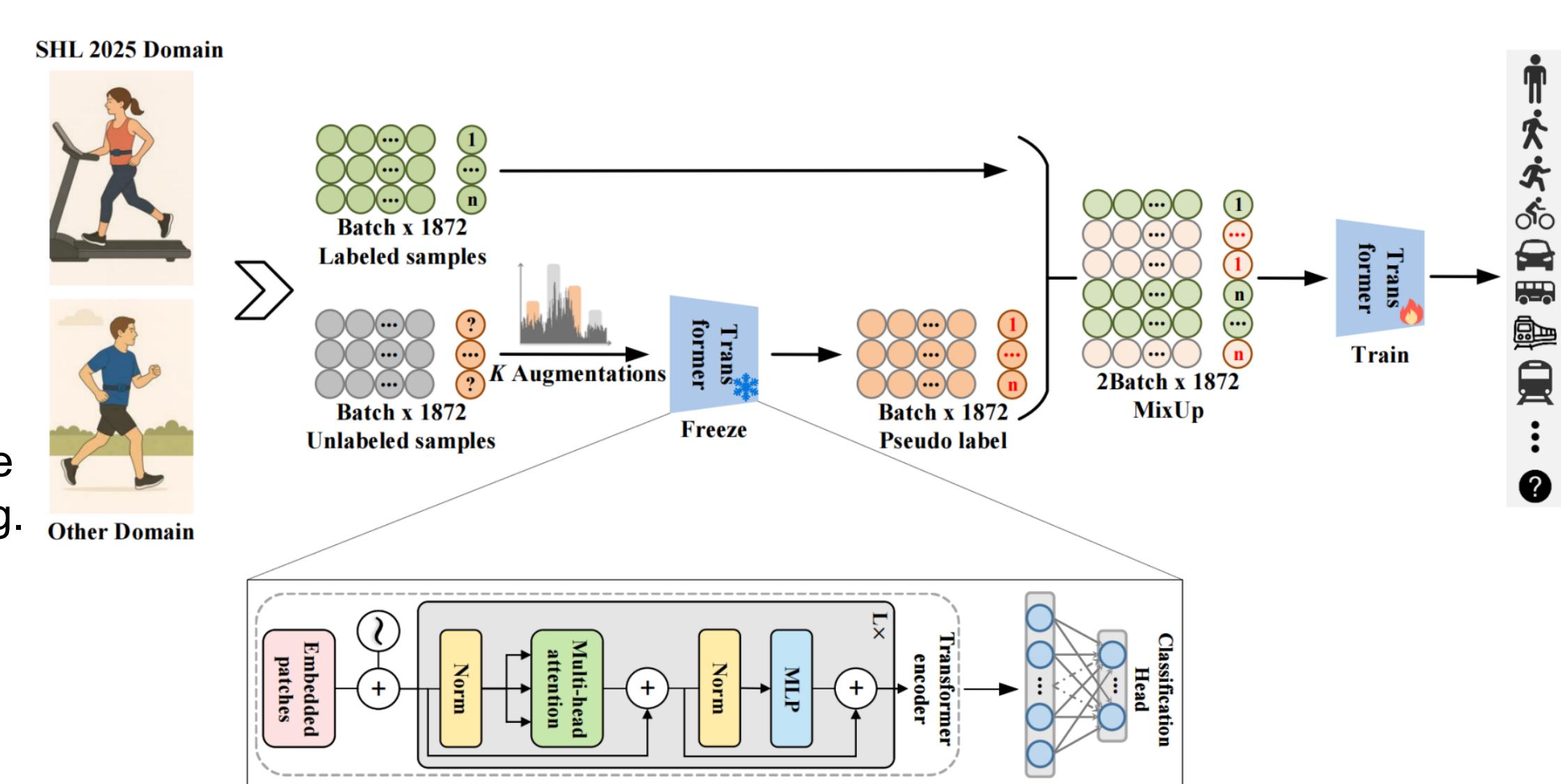
- Generate predictions for the augmented unlabeled samples using the current model and average them to create a "pseudo-label".

Soft Label Sharpening

- Reduce the entropy of the pseudo-label by lowering a temperature "T", making the prediction more "confident" to guide model training.

MixUp

- Linearly interpolate between labeled samples and pseudo-labeled unlabeled samples to create new, mixed samples for training.



Experimental Result

Experimental results on Task 2

Dataset domains	Locomotion and transportation mode recognition across dataset domains							
	ACC	PRE	REC	F1	MCC	AUC	FLOPs	Params
Basic	0.763	0.766	0.763	0.762	0.746	0.938	0.749K	2.992M
Enhanced	0.732	0.736	0.732	0.729	0.713	0.946	0.749K	2.992M
Advanced	0.768	0.772	0.768	0.765	0.751	0.939	0.749K	2.992M

Basic dataset domains: SHL Challenge 2025; Enhanced dataset domains: SHL Challenge 2025 + Kyutech IMU; Advanced dataset domains: SHL Challenge 2025 + Kyutech IMU + Others (i.e. PAMAP2 Dataset, UCI HAR Dataset, mHealth Dataset, RealWorld Dataset, and HAR Dataset); FLOPs is the computational cost per sample inference;

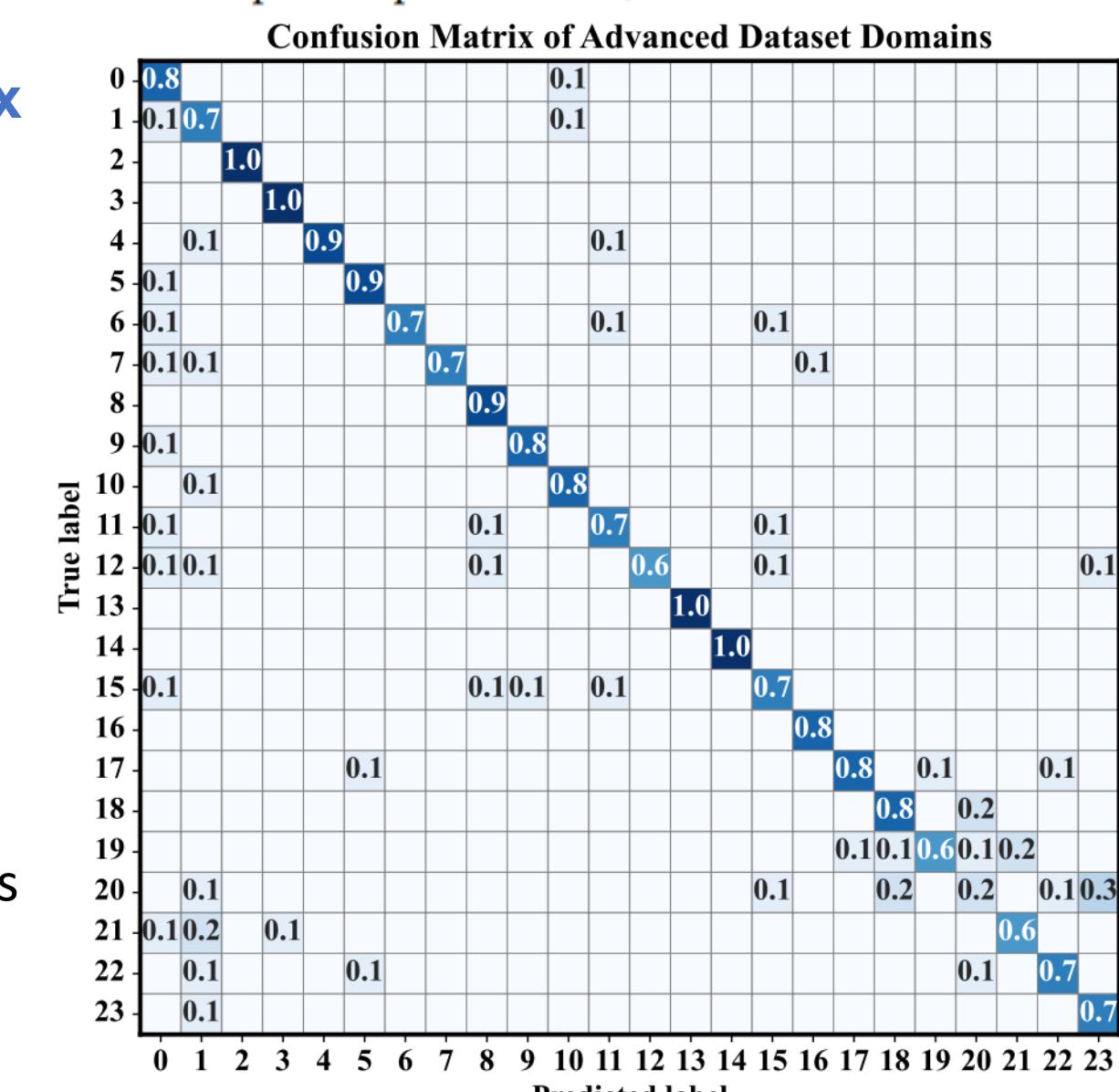
Core Performance:

- After integrating multiple external domain datasets, the method achieved an **Accuracy of 76.8%** and an **F1-Score of 76.5%**

Key Findings

- Importance of Multi-Domain Learning:** Experiments showed that using only the SHL dataset or adding just the Kyutech IMU dataset resulted in limited or even decreased performance. However, introducing a greater variety of public datasets (the "Advanced domain") significantly improved the model's generalization and final performance.
- Handling Class Imbalance:** A resampling strategy effectively mitigated the issue of having too few samples for certain classes in the training set.

Confusion matrix



Conclusion

Main Contribution: We proposed a MixMatch-based semi-supervised learning framework that successfully addresses the cross-domain HAR problem in a scenario with a completely unlabeled target domain.

- Leverages large-scale unlabeled data through mechanisms like pseudo-labeling and MixUp to adapt to the target domain's distribution.
- Demonstrates that integrating multiple heterogeneous source domains can effectively enhance the model's generalization and robustness to unknown.

Reference

- Introducing a new benchmarked dataset for nactivity monitoring.
- A public domain dataset for human activity recognition using smartphones.
- mHealthDroid: A novel framework for agile development of mobile health applications.
- On-body localization of wearable devices: An investigation of position-aware activity recognition.
- KU-HAR: An open dataset for heterogeneous human activity recognition.
- Acquisition of Unlabeled Dataset for Human Activity Recognition